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We offer a new computational method to calculate the radiation
coefficient a of a weakly nonlocal solitary wave in the limit that the
amplitude & of the core of the structure tends to zero. {A weakly
nonlocal solitary wave is a finite amplitude, nondissipative wave
which decays to a sinusoidal oscillation of amplitude « at large
distance from the core.j The multiple scaies series for the solitary
wave in powers of £ is asymptotic but divergent. When truncated
at optimal order {“superasymptotic” approximation), the series
gives no information about the radiation coefficient o {(except order-
of-magnitude) because the absolute error is Ql«). We describe two
“hyperasymptotic” approximations which add a second, different
asymptotic series to the multiple scales expansion so as to compute
o itself. The zeroth order hyperasymptotic approximation has a
relative error of Ole) in «; the sequence of approximations may be
extrapolated to give the proportionality constant in the limiting
asymplotic expression for o as € = 0. The first-order hyperasymp-
totic approximation has a relative error of only O(&%); its extrapola-
tion gives the Olg) correction to the Jlimit as & = 0. © 1995 Aca-
demic Press, Inc.

1. INTRODUCTION

A weakly nonlocal solitary wave, like a soliton of the Kor-
teweg—de Vries equation, is a coherent structure which steadily
translates without change of shape or form with a core which
is similar in shape to the hyperbolic secant function. The differ-
ence is that classic solitary waves decay to zero as |x| = 0. The
weakly nonlocal soliton decays instead to a quasi-sinusoidal
oscillation of amplitude o where e is the ‘‘radiation coeffi-
cient.”” Such weakly nonlocal solitary waves arise in a great
diversity of forms including bell solitons, breathers and enve-
lope solitons and a wide range of applications including water
waves, particle physics, fiber optics telecommunications, con-
densed matter physics, and meteorology [1-5].

The radiation coefficient o is important because it measures
the lifetime of the solitary wave with respect to radiative decay.
Unfortunately, e is very hard to calculate. For the three exam-
ples described here and many others, it is easy to derive power
series in g, where ¢ is the amplitude of the core, with coefficients
which are polynomials in hyperbolic functions. Unfortunately,
these multiple scales series cannot directly vield the radiation

coefticient, or indeed even offer a hint of the “*far field oscilla-
tions’ or “‘wings’” whose amplitude is « (Fig. 1).

One reason is that the e-power series is asymptotic but diver-
gent Yor all £ # 0. When iruncated at optimal order, as explained
below, the minimal error of the power series is O(a), the same
order of magnitude as the very quantity & we wish to calculate.

Furthermore, the radiation coefficient is proportional to
exp{—g/e) for some constant g. The coefficients of the power
series of a function with respect to the origin are proportional
to the derivatives of the function at £ = 0. However, all =
derivatives of exp(—g/e) are zero at € = 0, so exponential
functions of 1/e have only the trivial power series whose coef-
ficients are all zero. Such functions (and therefore the radiation
coefficient of a nonlocal solitary wave) are invisible to the
machinery of Taylor expansions about £ = Q.

Another way of arriving at the same pessimistic conclusion
is to observe that an exponential function of 1/ decreases
faster than s for any finite exponent m as ¢ = . Mathemati-
caily speaking,

exp(—q/e) < &, if e log(e) € —¢q/N, (1.
which is a condition that can be satisfied for arbitrary finite N
for sufficiently small 5. As the perturbation parameter &£ de-
creases, the radiation coefficient “‘drops off the radar screen’’
of the e-power series. By taking e sufficiently small, the leading
error in the N-term power series, which is proportional to ¥,
can be made as large as we please relative to a. [t is unreason-
able to expect that the truncated series can directly approximate
o when there are other corrections which are so much larger.

In the language of Segur and Kruskal [13], the radiation
coefficient lies ‘‘beyond all orders’” in the perturbation theory
in the sense of (I.1): it is smaller than any finite power of &
for sufficiently small «.

Nevertheless, it is possible to calculate o in a variety of
ways. A small cottage industry of perturbation theory ‘‘beyond
all orders™ has developed as catalogued in the NATO Work-
shop Proceedings edited by Segur, Tanveer, and Levine [9].

The various strategies have a common theme: to recast the
problem in such a way that o 15 not exponentially small com-
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FIG. 1. Schematic of a weakly nonfocal solitary wave. The radiation
coefficient o is the amplitude of the oscillatory ““wings.”’

pared to the quantities calculated. The most widely used strategy
is to apply matched asymptotic expansions in the complex plane
[13-15]. As one moves away from the real x-axis, the *‘wings”’
of the solitary wave grow cxponentially. In a neighborhood of
the off-the-real-axis singularities of the lowest order of the &-
power series, one can match expansions where the *‘wings”’
are O(1). One can then extrapolate back to the reai axis. Akylas
and Yang [16] described an alternative which converts the
problem to an integral equation after taking the Fourier
transform.

In this work, we develop a novel method which is based on
“‘beyond all orders’” methods for correcting asymptotic series
for integrals developed by Berry [6-8], Paris and Wood [14,
11], Daalhuis [12], Olver {26], and others too numerous to
mention. The guiding principle is that the coefficients of a power
series, even if divergent, nevertheless encode information from
which a can be computed. In this article, we shall describe a
simple procedure for decoding the radiation coefficient.

We will postpone a comparison with competing techniques
until the final section, but the algorithm described below offers
some interesting insights into asymptotic series. It is also sim-
pler in the sense that it does not use complex arithmetic, Borel
summation, or an integral equation.

To explain our algorithin, we need 1o review some basic
concepts in asymptotic series.

Optimal Truncation Rule. For an asymptotic series in the
small parameter &, accuracy is maximized (for a given fixed
£) by truncating the series with the term of smallest magnitude
[17], discarding all higher degree (and larger) terms.

This rule has been rigorously proved for many series and
numericaily seems to be a good heuristic for many others.
For our three examples, the optimal truncation N is inversely
proporiional to &.

One crucial point is that the error in an optimally truncated
series is typically O{exp[—g/e]) for some constant ¢ even
though the terms of the series—and the usual Poincaré defini-
tion of asymptoticity—involve only powers of &. To call atten-

tion to this exponential dependence of error on &, Berry [7]
coined the following term.

DeriviTion 1. A superasymptotic approximation is an op-
timally truncated asymptotic series. The error is O{exp(—g/e)
for some constant ¢ where £ <€ 1 is the perturbation parameter.

For the three examples described here, the error in the *‘super-
asymptotic’’ approximation is O(w). That is, to say, given
that the e-power series cannot possibly capture the exponential
dependence of the radiation coefficient on e, it does the next
best thing, which is to approximate everything ¢lse.

To compute the radiation coefficient from the asymptotic
series, we need something better than optimal truncation, some-
thing described by the following.

Derinirion 2. A hyperasymptotic approximation is one
of higher order accuracy than a superasympiotic approximation,
usually obtained by appending one or more terms of a second
asymptotic series to the optimal truncation of the original as-
ymptotic expansion [7].

What makes a “‘hyperasymptotic’’ approximation possible
is that a superasymptotic expansicn is not merely an approxima-
tion. It also can be used to recast the original problem into a
difterent form in which all terms are the same order of magni-
tude as the radiation coefficient «. That is, if we write

u(x;e)=A(x; &)+ Z g/ u¥x) (1.2)
j=1

and choose N = N,,(£), the superasymptotic approximation is
to set A{x; £} = 0. (Here, x is the spatial coordinate in a frame
of reference translating with the wave with the origin chosen
s0 x = ( at the maximum of the core.)

However, we can also substitute the decomposition (1.2} into
the differential equation to obtain an exact equation for the
new unknown Alx; g). If we attemnpt to calculate A(x; &) by
using the same scaling and order-of-magnitude assumptions as
were used (o derive the ¢Y%(x), then we will fail because these
no longer apply to A(x; &) when N = N,,(&). A hyperasymptotic
approximation is possible if we reexamine the magnitudes of
different terms 1o approximate A(x; &) by a second, different
perturbation series. A hyperasymptotic approximation is the
sum of rwe perturbation series for the same unknown in the
same small parameter with different assumptions about the
scaling and ordering of terms.

To explain these ideas, we use the '‘forced-KdV’" equa-
tion [16]

u, +u — w = g sech’(e x). (1.3
When & < 1, the lowest order approximation is
i~ &8 sech™(e x). (1.4
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It is easy to comipute higher corrections because both the second
derivative and the nonlinear terms are O(g?) relative to u. It is
proper to refer to the result as a “‘multipie scales’” perturbation
theory because we are implicitly assuming that the solution to
all orders depends only upon the *‘slow’ variable

X=c¢gu

(1.5)
Ateach order, we must solve a perturbative equation of the form

(X} = r(X), (1.6)
where u; and r; are the coefficients of & in the expansions of
u{x) and of the residual of the differential equation, respec-
tively. (For our other examples, (1.6) is linear differential equa-
tion rather than a mere algebraic identity, but the principle is
the same.)

The e-power series diverges because for a fixed e, the as-
sumption of *‘slow”’ dependence on x breaks down for suffi-
ciently large j. At the optimal truncation N,,(¢), we shall show
the Fourier transform of ry(e x) is peaked at k = X 1. These
are precisely the wavenumbers at which the second derivative
of u is the same magnitude as u itself, instead of being smaller
as assumed by the e-power series. A hyperasymptotic approxi-
mation must retain the u, term on the left-hand side of the
perturbation equations to compute the second perturbation
expansion which is added to the superasymptotic approxi-
mation.

Fortunately, the nonlinear term is still small compared to the
linear terms. This makes it possible to calculate the radiation
coefficient « to lowest hyperasymptotic order from

P 4 pyhyper = Ny

(7
As we shall show in Section 5, it is possible to compute a for
any constant coefficient differential equation in closed, analytic
form without obtaining the complete explicit solution to (1.7).

We shall further show that ry_, which is a polynomial in
sech(e x), can be approximated I:Fvy a single term te compute
« to lowest order, another valuable simplification.

The final step is an extrapolation to N = @, a simple polyno-
mial fit in 1/N. This gives an approximation in the form

a“’(V0+V|€)EXp(—jT—), e<1, {1.8)

2¢

where ¥, and 7, are constants. Justifying the factor of 7/2 &
inside the exponent is fairly easy, both for our algorithm and
for all the alternatives. To compute », and 1w, is, as the poet
Virgil said of returning from death: **“That the labor, that the dif-
ficulty.”

In the next few sections, we shall carefully explain each of
these steps using (1.3} for illustration. We shall then compute
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1y for three examples: (i) forced-KdV equation, (ii} The fifth-
order KdV equation [3, 14, 15], and (iii} the third-order nonlin-
ear Schroedinger equation [1, 18, 19].

2. MULTIPLE SCALES PERTURBATION THEORY:
OPTIMAL TRUNCATION AND SUPERASYMPTOTICS

In the limit that ¢ <€ 1, the forced-KdV equation (1.3) can
be approximately solved by assuming a power series expansion
in &

N
UM ) ~ Y, £ (X) Q2.1
i=1
; J
u{x) = D dy, sech?™(e x) (2.2)
m=]
using hyperbolic identities such as
dsech(z) _ — sech(z)tanh(z): d tanh(z)
dz dz
= sech®(z); tanh¥(z) =1 — sech’(z) (2.3)

and matching powers of &. The algorithm is so simple that the
entire computer program is given as Table 1, cost grows as
O(NY), where N is the highest order to which the expansion
is carried.

At each order, we solve

ufx) = rixh (1.5 bis)

where r(x) is the O(&%) term in the residual obtained by substi-
tuting %Y~ "(x) into the full nonlinear equation (1.3). In words,
both the second derivative and the nonlinear term are O(&?)
smaller than undifferentiated linear term, collapsing the pertur-
bation theory into a trivial recursion.

The perturbation theory is thus simultaneously an expansion
for small amplitude and for large length scale. It is legitimate to
refer to the expansion (2.1) as a “‘multiple scales’” perturbation
theory [17, 20, 21] because it is the assumption of a large length
scale—not the nonlinearity—which is responsible for the diver-
gence of the series [22]. Even when quadratic term 2 is dropped,
the e-power series for the resulting linear equation is still
divergent [22].

Figure 2 illustrates the error in the series (2.1) as a function
of degree j for three different €. One observes: (i) There is a
minimum error for each fixed e. (ii) The degree j of the mini-
mum increases as £ decreases (ii1) The minimum esror is equal
to the radiation coefficient a{e).

The reason that the perturbative series diverges is that the
neglect of the second derivative on the left-hand side of (1.3)
implicitly assumes that the solution is only a function of the
“slow’” spatial variable
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TABLE 1
MATLAR Code to Compute the z-Power Sefies for the Forced-KdV Equation

{
¥ z agech™(e x}
m=1

ih]=

u(a"']( JC} =
1

a(l, D =1; a2, )= -4 a2, 2) =7, % mitialization

forj =3: N % N = user-chosen maximum order
% Second derivative contributions
alj V= —4=a(j — 1,1}

alfy=2*j-2x2=j— Dsaj-1.7-1)

form=2:(j— 1)

alj, m) =

end

% Nonlinear contributions

fork=1.{-1
form=1: %

forp=1:(j — k)

—dEmEmra(j—1.m)+ 2xm -2 (2*xm— D*ralj—1,m-—

1)

aljym+py=a(j,m+ p)+ alk, m) ¥ a{j — k, p}

end
end
end
end

X=¢x (2.5
and not of the “*fast’” scale of the homogeneous solutions of
the linear part of the different equation, cos(x) and sin{x), which
vary on a unit length scale. Unfortunately, this assumption of
“only-slow”’ dependence is not entirely true.
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107} 4
g=n/10
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Error =——s
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penurbatlon order N

F1G. 2.  Maximum pointwise error in the multiple scales perturbation theory
as a function of perturbation order ¥ for three different values of &: solid-
with-circles, & = 7/10 (N, = 3); dashed-with-pluses, € = 7/18 (Ng = 3);
dotted-with-x's, & = /26 (Ny, = 7). The horizontal lines denote the radiation
coefficient o for each of three values of &.

The Fourier transform of u(x) is helpful to see this, where
the transform is defined by

Uk) = " () exp(~ikx) dx. (2.6)

\/_

Transform theory shows that if ul(x) decays exponentially for
large |x| (or asymptotes to a sinusoidal oscillation) and is ana-
lytic in the strip [Im(x)| < g, then its transform {/(k) will decay
as exp(—glk|). Inserting & shows that the transform of u(e x)
must decay as exp(—gl{kl/e). At k = 1, the wavenumber of
the far field oscillations, I/{k) is proportional to exp(—g/&).
Therefore, the dependence of u{e x) on the *‘fast’’ length scaies,
equivalent in the Fourier transform to & ~ (1), or larger, is
exponentially small in 1/g, but not zero,

Retaining more terms in the e-power series reduces the error
in the slow components of the solution, i.e., [k| < 1. Unfortu-
nately, the error is magnified in the higher wavenumbers [I,
Chap. 2. Consequently, the Fourier transform of ry_{x)
[= uNup[(x)] is peaked not at £ = 0, but rather at k = =1 as
shown in Fig. 3. For N > N,,. the peaks of the transform of
ri{x) move to larger and larger |&l.

[t is for this reason that adding more terms (beyond j = N,
is counterproductive: The assumption that u;,, ~ O(g*) y; fails
utterly at j = N,.. The hyperasymptotic appreximation must
include the second derivative as part of the operator on the
left-hand side of the perturbative equation, as in Eqg. (1.7}

Figure 3 suggests a second definition of the optimum pertur-
bation order: The order is optimum when the Fourier transform
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FIG.3. (Forced-KdV equation). Absolute value of the Fourier transforms
for (solid curve) the eighth-order residual, which is also «*®, and for its *‘lead-
ing”” approximation (dashed), which is proporsticnal to the 14th derivative of
sechl(e x).

of the Nth order residual ry(x) is peaked at the wavenumber
of the far field oscillations [i.e., at k = 1 for the forced-KdV
equation].

Unfortunately, there is no simple formula for the Fourier
transform of ry(x} per se. However, as will be shown later, the
dominant term in the Nth order residual is equal to a constant
times the (2N-2)th derivative of sech’(e x). {The Fourier trans-
form of this “‘leading’” term is the dashed curve in Fig. 3; note
how well it approximates the Fourier transform of the whole.)
Since differentiation with respect to x multiplies the Fourier
transform by (¢ &}, it follows that Fourier transform of the
leading term in #y(x) is proportional to

kz”lexp(— 21 k),
€

where we have approximated 1/sinh(z k/(2 £)) by the exponen-
tial for & <¢ 1. The transform of the leading term is peaked at
k = 1 when

(2.7)

1 T T

= -4 — =
Now =3+ e O 8 = 3" 172)

(2.8)

The right equation of (2.8) was used to pick the £ values for
which N = 3, 5, and 7 should be optimum; the minima in Fig.
2 are indeed at the predicted N.

It turns out that knowledge of the optimum perturbation order
as a function of & is no! necessary to compute ¥, only to
compute its O(g) correction 1. In any event, the minima in
error as a function of order are shallow and broad. Of much
greater importance is the fact that the transform of ihe residual

is not peaked about & = 0, but rather at the wavenumber of
the far field oscillations. This defines the new scaling, the
alternative method of approximation, which is essential in pass-
ing beyond the limitations of the superasymptotic approxi-
mation,

3. NEWTON’S ITERATION: 0(o’) IN ONE ITERATION

Newton's iteration is the standard numerical method for non-
linear problems. The differential (or algebraic) equation is lin-
earized with respect to the current iterate to obtain an equation
tor the correction. For one-dimensional problems, each New-
ton’s iteration requires the solution of a linear, variable coeffi-
cient ordinary differential equation. (This linearized ODE is
often called the **Newton—Kantorovich’ equation where the
second name honors the Nobel-winning economist who proved
that Newton’s method could be applied to differential equa-
tions.)

For the forced-KdV equation, the iteration is

AL+ A =200 A = Flx)y =

—{ul + ' — (Y — e'sech(e x)}

WH(x) = o + AL

(3.1a)
(3.1b)

We repeat this until the correction A' is satisfactorily small.

Sufficiently close to a solution, Newton’s iteration has **digit-
doubling™ convergence. That is to say, the error after each
iteration is the square of the error at the previous iteration {(in
order-of-magnitude).

This implies that if the initial iterate is a superasymptotic
approximation, which has an error O« ), then a single Newton’s
iteration will reduce the error to O(a?). Since « is exponentially
small, it follows that solving one {inear equation of the form
of (3.1) will calculate the radiation coefficient o to within a
relative error of O(w), i.e., a relative error which is exponen-
tialty small in 1/e.

Figure 4 confirms this prediction. (The order N, (&) of the
superasymptotic perturbation approximation is defined by Eq.
(2.8).) Indeed, the error after a single Newton iteration is actu-
ally a little smaller than o,

Thus, the superasymptotic approximation has made New-
ton’s method non-iterative in the sense that one solution of
the Newton—Kantorovich equation will suffice for all practical
purposes (if £ < 1). Unfortunately, (3.1a) is a variable coeffi-
cient equation. The secret of our new algorithm is to approxi-
mate the true Newton—Kantorovich linearized differential equa-
tion (3.1a) by something simpler.

4. A QUASI-NEWTON METHOD: APPROXIMATING THE
NEWTON-KANTOROVICH EQUATION BY A CONSTANT
COEFFICIENT ODE

In practical arithmurgy, Newton’s iteration is often prohibi-
tively expensive. The main culprit is the need to compute and
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FIG. 4. Solid-with-x's; a{g}. dotted-with-circles, a(e); dashed-with-
pluses, error in e after one Newton iteration, beginning from a first guess
which is the optimal perturbation theory. Forced-KdV equation spatial
period = 63 7/100 collocatton points.

factor the Jacobian matrix, which is the discretization of the
(always linear) differential operator of the Newton-
Kantorovich equation. Most books on solving algebraic systems
of equations are really tomes on so-called ‘‘quasi-Newton™
methods, a catch-all that embraces a great diversity of algo-
rithms that use Newton’s linearization but cheat on the Jacobian.

Our quasi-Newton strategy is to neglect the variable coeffi-
‘cient term in Newton's iteration, that is, to simplify the New-
ton—Kantorovich equation to the constant coefficient, inhomo-
geneous problem

Al A=), @.1)
This is a profound simplification because in a Fourier—Galerkin
representation, the discretization of the simplified differential
operator is a diagonal matrix. A single iteration of (4.1} requires
only two fast Fourier transforms (FFTs) at a cost of O(M
log, M) operations per iteration instead of the O(M*) cost of
factorizing a large, dense spectral matrix [21], where M is the
number of Fourier coefficients in the truncated expansion of
u{x). Even though the rate of convergence is much slower than
an unmodified Newton iteration, the cost per iteration is reduced
so drastically that the quasi-Newton approximation is cheaper.
(It is for similar reasons that quasi-Newton algorithms have
become so popular in numerical analysis.)

The obvious reason to neglect —2w(x) A'(x) is that u(x) is
O(eh), so this term is apparently O{£%} in comparison to the
undifferentiated term on the left in (4.1). (Indeed, this is the
same rationale for why the equation which is solved at each

order of the multiple scales perturbation theory, (1.6), is also
free of this term.) Reality is a little more complicated.

First, our primary goal is the radiation coefficient ce. Because
« is exponentially small in 1/, it is possible for an approxima-
tion to have sinall absolute error for #(x) and yet still miss the
radiation coefficient, (Indeed, this is precisely the failing of the
multiple scales series, which approximates u(x) to O(&"), but
approximates & by zero for all orders N1). Even when the second
derivative is retained, as in the quasi-Newton approximation,
disaster is still possible. For example, Akylas and Yang [16]
show that the relative error in & made by solving the “‘lin-

ear’’ approximation

u, + u = sech¥(e x), {4.2)
mstead of the full forced-KdV equation, is about 534% for all
small e—an O(1) error.

It is true, however, that when the RHS of the Newton—
Kantorovich equation is the residual of the optimally truncated
multiple scales series, one can neglect the O(g?) linearized term
and obtain an accurate approximation to « as € = 0. For
this special case, the inhomogeneous term in the differential
equation is itself of G{e). It follows that an O(g) relative error
in solving this differential equation yields an absolute error of
Q{w &), or in other words a relative error of O(e) in w itself,

This claim of ((e) error in A'(x) can be justified by an
“‘envelope’’ perturbation theory (Appendix). However, experi-
mentaily, the relative error in the radiation coefficient is actu-
ally O(&h.

Figure 3a shows the maximum pointwise error in A'{x) (top
curve) and also the error in the radiation coefficient a (bottom).
On this log—log plot, a quantity which is proportional to a
power of & should approximate a straight line. Both curves in
Fig. 5a asymptote to lines, but the slope of the error in the
radiation coefficient in approximately double that for the maxi-
mum error in A'{x). Figure 5b shows the relative error in «
divided by &*. This ratio varies roughly linearly with g, showing
that for the indicated range of &,

o — aﬂne—quaﬁirNewum

P,
=g &7,
4]

4.3)
& <€ ] (empirical curve-fit).

This happy difference between the two errors arises because
the maximum absolute error in A'(x), which is O{e a), occurs
in the core of u(x). The error in A'(x) for {arge |x| is Oe)
smalier, and this translates 10 an (/(g? o) absolute error in a.

One final comment: although all the illusirations in this article
use just one quasi-Newton iteration, it is quite acceptable (in
a numerical, non-hyperasymptotic computation) to iterate many
times with a O(e) reduction in error at each step, Since o ~
O(e!9), N iterations reduce the error from « to (roughly) .
N guasi-Newton iterations are equivalent to a single standard
Newton's iteration.
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- actlla,m, versus £ is shown as the solid curve with circles, where o, is the error made in replacing the Newton-Kantorovich

equation by a constant coefficient equation. The top curve (dashed with x's) shows the maximum error, again relative 10 «, in A'(x). Both etrors are after a
single quasi-Newton iteration, begun from a superasymptotic approximation. (b} Solid curve: Relative ervor in o divided by &2, after one quasi-Newton iteration
begun from a superasymptotic approximation. Dashed line: linear interpolant of the first and last data peints; this shows that the error/g? is well-approximated

by a straight line, or equivalently, that |oes — O/ Do = 8 ~ § £,

5. COMPUTING THE RADIATION COEFFICIENT FROM
THE SOLUTION TO A CONSTANT COEFFICIENT
DIFFERENTIAL EQUATION

1n the previous section, we showed that it was a good approxi-
mation [((e?) for the radiation coefficient a] to simplify the
Newton—Kantorovich equation. Here, we show how to com-
pute c.

For generality, assume that the linear, constant coefficient
equation may be written in the generic form

P (ﬂ'é—) u(x) = f(ex), 5.1)
0x

where P(z) is a polynomial and f(e x) is the inhomogeneous
term, which in applications will be the residual of the optimally
truncated perturbation series. Let the Fourier transforms of u{x)
and f(x) be denoted by U(k) and F(k), respectively, where

F(k) = " exp(—ik) f(x) dx (5.2)

\/_

and similarly for {/(k). Taking the transform of both sides of
(5.1) gives the formal solution

F(kie) dr.

’ explikx) ——— o PR (5.3)

1
ulx) = \72_—;’{_(”

We assert {and prove below) that the radiation coefficient comes
from the points where the integrand is singular, that is, where
P(k) = 0.

We make two assumptions. First, f{x) is a function which
(i) decays exponentially fast for large | x| and (ii) whose singular-
ities {poles, branch points, etc.) are separated from the real x-
axis by a finite distance, and these properties apply to its Fourier
transform F(k), too. (It is easy 1o prove these properties when
f(& x) is a polynomial in sech(e x), as irue of the residuals of
the forced-KdV, FKdV, and TNLS equations.) Second, we
assume that P(k) has m simple roots along the real k-axis,

We can then derive explicit formulas for the radiation coeffi-
cients by adding and subtracting functions whose denominators
vanish at the real roots of P(k), thereby splitting u(x) into
two parts:

H(X) = thoea{X) + Ui siera X)s 5.4)
where, writing P’ for dP/dk,
() = \f_ | exp(akx)
(- sy e o
Ui gl X) = ﬁ: P ] F(k\/la_) exp(ikx) E)E&(_]ﬁ()\i—kk;—k’f—)dk,

(5.6)
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TABLE TI

The Radiation Coefficient for Linear, Constant Coefficient Differential
Equations of Various Forms

a:le:cos(](.r)f(sx)ds

w= —J: cos{x) fie xydx

Eq.

KAV wn + K = fle x) = u ~ o sgnix}sin{K x), [x| = o=
FRKAV  wy + 1, = fle x) = v ~ o sgn{x)sin(x), |x| =
TNLS 3620 + ie’0, + 30—

0w = flex) = 0 ~ a i sgnlx)exp(—ix/2), |x] —= o

a=-2 j " explin/2) f(e xy d

where A is a non-negative constant. By construction, i, (x) is
the Fourier transform of a function of &k which is analytic
everywhere within a finite strip about the real k-axis and is
exponentially decaying for large |k]. A standard transform theo-
rem then implies that u,(x) must decay exponentially fast
with |x]. Thus, u,.(x) is spatially localized; the far field oscilla-
tions are contained entirely within ug, 544(x), which by construc-
tion contains all the poles of the integrand of u{x) on the real
k-axis.
By using the identity

exp(— Ak ~ k)’)
=k dk

J’: exp(ikx) ‘ 57

X
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= imexplik x)erf

and recalling that

le—» o, (5.8)

erf(x) ~ sgn(x),

we can easily deduce the asymptotic form of the soiution to
the constant coetficient differential equation {Table 11).

For the farced-KdV equation, polynomial P(k) = K* — &,
that is, the linearized equation is

u, + K = f(& x), (5.9)

where K is the far field wavenumber (K = 1 in the rest of the
article). There are two roots at K = =K the contributions can
be added to give the real-valued asymptotic solution which is
listed in the table.

For the FKdV equation, there is one modest subtlety, Its
linearized, fourth-order form is

iy + 1, = fle x). (5.10)
The quartic polynomial P(k) is
Py =k — K. (510

The two roots at £ = *1 give a far field identical to that of
(5.9), except for an overall sign. However, there is also a double
root at & = 0. This is an artifact of the neglect of the —¢ u
term. If we included this O(e?) correction, the roots at k = *1
would be modified only by O(£%), which is consistent with our
other approximations; these roots remain on the real axis. The
double root at k& = 0, however, is shifted off the real axis to a
pair of roots on the imaginary axis at k = *i g. The contributions
from these roots are not sinusotdal in the far field, but rather
decay exponentially on an O(1/e) length scale. Therefore, only
the two roots of P{k) at k = x| contribute to the far field of
the FKdV nanopteron, and only these contributions are included
in Table 11 (with neglect of the —cu correction).
The linear, constant coefficient equation derived from the
third-order non-linear Schroedinger ({TNLS) equation is
2’ Q+ i Q.+ 40, — iQu. = f(ex).  (5.12)
The associated polynomial is a cubic which can be exactly fac-
tored:

Py = —4&' — ek — 32—
(5.13)
= —(k+ PR+ &),

The two complex roots are irrelevant to the far field. The single
contribution from k = —1/2 gives asymptotic oscillations which
are complex-valued, but this is counsistent with the coroplex-
valued coefficienis and solution of the TNLS equation.

It is important to note that the splitting of u{x) into two
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pieces and the asymptotic solutions listed in Table 11 involve
no approximations (except taking large |x{). Except for (5.8),
every equation in this section is exact for the constant coeffi-
cient, linear differential equation. When we apply Table Il to
perturbation theory, we will obtain only an approximation. The
error is not due to the {non-existent) approximations of this
section, but rather the approximations of (i) neglecting the
variable coefficients in the Newton—Kantorovich equation (Sec-
tion 4 and (ii) the sumplifications of the residual function
f(g x), which shall be jusiified in the next section.

6. SIMPLIFYING THE RESIDUAL

When the first guess for Newton’s iteration is u**%x), the
total residual,

Yty 8V} = —{u + 4™ — (™) — £'sech’(£ )},

(6.1

is a mess for large N, For example, the residual of #™{e x) is,
with the abbreviation s = sech{e x),
Fow{ 2™ = £1%2565% — 308085 + 370880s5" — 8258405
+ 5072065'%}
+ &2 {7685" — 25088s° + 130080s% — 2217045" + 1192665}
+ &M{967685° — 10033125* + 34975685 — 46661445 (6.2)
+ 21021005"}

]6{40965‘ — 31334455 + 71150085 — 438017285'0}
+1102930245' — 1196832005 + 465806255 |

For general N, the residual is a bivariate polynomial in & and
5 with integer coefficients,

2N 2

Hu™) = > 89> ry,sech¥(s x),
j =

JENH

(6.3)

where the 1y, are constants. The number of terms grows qua-
dratically with N. It follows that simplifying the residual is
highly desirable.

Since the radiation coefficient a is merely the Fourier trans-
form of the residual, evaluated at the resonant wavenumbers
(k = =1 for the forced KdV equation), the test of a good
approximation to the residual must be that the approximation’s
Fourier transform agrees closely with the transform of the resid-
ual at the resonant k.

The Fourier transform of the residual at any order can b
expressed in terms of :

e k)= J: &Y sech¥(e x) cos(k x) dx (6.4a)

_ik_, i=1
. .
2 sinh{ =
I(s =4 " (28)
TR + Ve + AR+ 25 -2
2 sinh(7k/2e)(2j — 1)1 : {6—%)
S
Qi— D\ T ) e < 1),

The asymptotic form suggests that only the highest powers in
the residual, of the form &¥ sech¥(e x), will contribute to the
radiation coefficient. This is true, but the argument is shaky
because & is not small compared to 1/f for j = Ny,

To see what really happens, we used the top line of (6.4b)
to evaluate the contribution of each term in the residual as
Table 1. The second column of the table is the sum of the
numbers to the right in each row; it represents the net congribu-
tion of all terms in the residual which are proportional to a
given power of g, that is, the contributions of the 7, ; for fixed
J- We see from this column that the lowest order terms in the
residual, i.e., those terms proportional to £'%, are much larger
than all terms proportional to higher powers of &.

The second striking feature of the table is that the Q(&™)
terms (top row of numbers) are large and alternating in sign,
Their sum, 1.53, is the small difference of large numbers. As the
order N increases (not illustrated), one finds that this tendency to
self-cancellation becomes more and more pranounced. It would
seent that the simplest approximation with small errors is

Feal ™) = 1y, (x) (6.5)
which is equivalent to truncating the outer sum in (6.3) to j =
N + 1. For the forced KdV equation, these coefficients of the
residual are antomatically computed by the e-power series;
recall that the coefficients of the expansion of wu{x) are given
by ax (Eq. (2:2)),

Funei e = Oyypg- (6.6

Fortunately, this pessimistic assessment is false. For the lin-
ear boundary value problem

u, + u = £ sech’(g x) (6.7
the residual is given exactly by the 2Nth derivative of the
square of the hyperbolic secant function,

P
dX™

(™) = (= 1)t

{sech’(X)h. (6.8)

The residual for the nonlinear generalization of (6.7) is not so
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TABLE 11

Contributions of Each Term in the Restdual of 4*(x) to o

Order Row sum 5? 5! 0 5? st 512 st ¢
g'? 1.53607 0.0002 —0.2104 4.7854 ~17.462 14.4230 — — —
el 0.00475 _ 0.0001 —0.0099 Q.0818 —-0.1920 0.1247 — —_—
g 0.00968 — — 0.0012 —0.0197 0.0923 —0.1487 0.0759 —
g 0.00015 — 0.0000 —0.0001 0.0043 —0.0352 0.1070 01317 (.0558

Noze: (i) These are scaled by multiplication by (2/7) sinh(7/2¢&); (ii} € = 0.1745, which is optimum for N = 5: (iii) s = sech(g x).

simple. However, as N increases, the nonlinear term, which is
the difference between the forced-KdV equation and (6.7),
becomes less and less important. [n Section 4, we have already
justified the neglect of the quadratic term on the left-hand
side of the Newton—Kantorovich equation. This suggests the
aliernative approximation for the forced-KdV equation

N
Pl == gy €24 i {sech’(X)}

e (6.9)
for some constant uy. This constant can be chosen in a var-
iety of ways; our choice is to match the highest power of
sech(e x) in ¥ "(x). A single term in the residual then ¢com-
pletely determines the approximation (6.7). By using the
identity

a% {sech¥(X} = 4 j2sech®(X)
= 27{2j + Dsech’™X(X)

(6.10)

which implies that the highest coefficient of the 2Nth derivative
of sech®(X) is (—1)¥ (2N + 1)}, our choice for wy is

any

uw=(“1)"’m- 6.11)

The Fourier transform of a derivative is just (ik) times the
Fourier transform of the undifferentiated function. This implies
that (6.7) plus the replacement of the full Newton—Kantorovich
equation by a constant coefficient equation yields the zeroth-
order hyperasymptotic approximation,

ayy T
(2N — 1)} 2sinh(7/2e)”

o = (6.12)

Neglecting only higher powers of ¢ in the residual gives the
more complicated but more accurate first-order hyperasymp-
totic approximation,

N
o= I(e; 1) ay. {6.13)
i=1

Figure 6 compares the accuracy of these two approximations.
We find that the lowest hyperasymptotic approximation has an
error of O(e) while using the whole of ry (=) gives an error
which appears to scale as O(&?).

The accuracy of the first-order hyperasymptotic approxima-
tion is hardly surprising because in the muitiple scales theory,
all the terms in the total residual which do not appear in u(x)
are supposed to be smaller by at least G(g%). However, this
argument is inadequate by itself for two reasons. First, when
N is the optimal truncation for a given &, the multiple scales
theory is breaking down, which would seem to invalidate argu-
ments based on the e-power series. However, the perturbation
series breaks down at N = N, (&) because the second derivative
is no longer negligible, not because of any difficulty with the
ordering of terms in the residual.

The second worry is because « is very small, small errors
in the residual could have large effect on the radiation coeffi-

=2

25r

Relatige Errora

=

0.05F
.‘/ -’ ’
i e
o Pl i I L
0.05 01 0.15 02 0.25 03

FIG. 6. (Forced-KdV equation). Solid {upper curve): o™, relative to use
of the 1otal residual for #'¥='="Y(x), where N,(e) = 5 + 7/(4 &). Dotted:
quadratic least squares fit to relative error where the fitted polynomial =
—0.003 + 0.72e + 0.56&°. Dashed (Jower curve): error in a when the residual
is approximated by all O(z™) terms. Dash—Dot: quadratic fit of the ervor by
—0.0011 + 0.031¢ + 1.68£% (In the limit N = oo we conjecture that only
the quadratic term would survive.)
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FIG.7. (a)Scaled radiation coefficient in the zeroth-order hyperasymptotic
approximation versns /N, oaw/{n/[2 sinh(a/(2e))]}. This equals ayw
(2N — 1)}, where ayy is the coefficient of sech®™(& x) in uy(x), the Nth-order
term in the muttiple scales perturbation theory. (b) Same as (a), but on a shorter
riange n 1/N.

cient. This, too, is a faise worry because at the optimal trunca-
tion, fu(#@") ~ O(a). This implies that a relative error in
the residual of O(&?) will give an etror of only O(sY) in « too.

The zeroth-order hyperasymptotic approximation (6.12) has
a more heuristic justification. Nevertheless, it is useful not only
because of its simplicity, but also because it contains no explicit
dependence on £ except for the sinh(77/(2 &)) factor. The accu-
racy of our formula for the optimum order N as a function of
€ is irrelevant to (6.12), so long as it is correct in order of
maguitude. As we shall show in the next section, this approxi-
mation generates a sequence which converges to 1, as N = oo,

7. NUMERICAL RESULTS

1. The forced-Korteweg—deVries equation:

Uy + u — 1 = glsech’(e x) {1.1bis)

Figure 7a is a graph of the scaled zeroth-order hyperasymp-
totic approximation as a function of 1/N; Fig. 7b is the same
plot on a narrower interval. We plot (7 exp(m/(2 £} ax(h O))
versus 1/N, rather than N itself, because we have shown above
that the error in approximating «(&) via the zeroth-order hyper-
asymptotic approximation is O(e). Grimshaw and Joshi [15]
have shown, not for (1.1bis) but for the closely related FKdV
equation, that the deviation of a(e) from », exp{—7/(2 &)} is
also O(e). Recalling that N, ~ O(l/g), this implies that the
scaled numbers shown in Fig. 7 will differ from the constant
2y by an amount which is O(g) ~ O(1/N). For similar reasons,
we estimate ¥, by polynomial fitting in the variable 1/N.

Figure 7b confirms that for small 1/N, the radiation coeffi-
cient does, indeed, vary roughly linearly with 1/N. We can
make better estimates by fitting polynomials of various orders
to the large N terms of the sequence for vartous N;

a ~ 7 1.558823 exp(—%), £=0, 1.2)

The rightmost digit was obtained by using the recurrence of
Akylas and Yang {16). This, although derived by very different
means as discussed below, gives exactly the same sequence as
our ax(h (). However, because they have derived an explicit
recurrence, one can easily compute the sequence up to N =
500 without roundoff difficulties,

Our method is more general but requires more computations.
Table IV shows some differences between 1.558823 and the
linear coefficients in the fitted polynomials of various degrees.
Computing to N = 60 via the algorithm in Table 1 required
only a couple of minutes in MATLAB on an Apple Quadra
700. Roundoff does become a problem for larger N, but we
still can compute v, to six decimal places in 14 place arithmetic,
The cubic and quartic polynomials in 1/N give significantly
better estimates for v, than the linear and quadratic fits.

The improved approximation,

o~ 1.558823 (1 + V.e)exp(—g%), e<tl, (1.3)

can be calculated via

"= }vlm 2/ %8 (74)
where
TABLE IV

Differences between the Constant in a Polynomial Fit to au/
(2N — 1)! (Scaled Zeroth-Order Hyperasymptotic Approximation)
and 1.558823, Which Is Our Best Estimate for the Proportionality
Constant in the Asymptotic Form of the Radiation Coefficient for the
Forced-KdV Equation

Range of N
fitted by

polynomial [inear Quadratic Cubic Quartic

in /N pelynomial polynomial pelynomial  polynomial
16:20 0.00016 —0.00010 0.00003 0.00000
11:20 0.00037 —0.00026 0.00003 —0.60001
36:40 0.00002 (1.00000 0.00000 (.00000
340 (.0600G2 —0.00001 0.00000 0.0000G
21:40 0.00004 —0.00002 0.00001 0.00000
56:60 0.000004 —{1.000002 0.000000 0.000000
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10" 10°

1/N

FIG. 8. (Forced-KdV equation). Circles: py plotted versus /N for N =
1, 2, ..., 40. The solid line is a linear fit for large N, showing that the sequence
is asymptoting to this line.

af

= [1.558823 exp(—al2e(N) 1]/8(1\1) (7.5)

with () given by the optimal truncation rule:

i .
£ = m (2.8]313)
Note that we must use the first row residual, Le., the whole
residual at each order as employed in the multiple scales theory.
The one-term approximation is inadequate because it has an
O(e} ~ O(1/N) error which would be added to v, if we calcu-
lated (7.5) from (6.12) instead of (6.13).

Grimshaw and Joshi [15] have explicitly calculated the (non-
zero) value of 1 for the FKdV equation (next subsection), but
their improved complex-plane matched asymptotics has not yet
been applied to {1.1). Thus, the extrapolation of the sequence
Py generates new information, hitherto uncalculated.

One technical complication is that computation in the usual
16-decimal-place floating point arithmetic gives unreliable val-
ues for py for N > 30 because these elements are the small
difference of large terms. We solved this by evaluating the
series coefficients and the integrals /; in exact rational arithmetic
in Maple, retaining 7 as a symbolic unknown, and then evaluat-
ing the result in high precision (25 decimal places for N up to
40) before fitting polynomials in 1/N. The algorithm of Table
1 plus computation: of the integrals required less than an hour
on an Apple Quadra 700,

Figure 8 shows that the py decrease rapidly as 1/N goes to
zero. The elements asymptote to a straight line on the log—log
plot whose extrapolant as 1/N = 0 is zero. Fitting {p:1, p. ooy

Py} by polynomials in 1/A approximates v as the constant in

the polynomial. Linear, quadratic, cubic, and quartic pelynomi-

als give —0.00015, —0.000093, —3.7 X 107% and —1.8 X
107¢, respectively.

These numbers are so small that it seems likely that

v =}, a.n

but this conjecture can be proved only by analytical methods

[15]. From our numerical estimates, we can say only that v is
very, very small in comparison to », = 1.5588.

2. The Fifth-Order Korteweg—DeVries Equation

We solve this equation in its fourth-order form,

Uy + 1t + 302 — cu = 0, (7.8)

where the phase speed ¢ is given to all orders in & [15] by

c =4 + 16 (7.9

The solution u(x; &) is expanded exactly as for the forced-
KdV equation,

N
W00 ) ~ > 8% ufX) (2.1bis)
J=1

i
u(x) = E] a,sech’™ (g x). (2.2bis)

However, at each order we must solve a differential equation
rather than an algebraic equation,

Uy — 48%0y = ry. (7.12)
Fortunately, this can be accomplished merely by matching pow-

ers of sech(e x), just as for our other equations. The Nth-order
perturbative residual is

Nl

X)) = > rysech(e x). (7.13)
k=1

Note that the lowest order residual of #" is O(&*¥™%) ry(x),
not G(&™) ry(x), and note also that the upper limit on the sum
m (7.9} is (N + 1) rather than N. (The pseudocode to compute
the series is given as a table in Chapter 9 of [1].)

The zeroth-order and first-order hyperasymptotic approxima-
tions to « are

-+l

(2N + 1}

i = —

(7.14)
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FKdV: Quarticfits in /N to_vg
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FIG.9. The constant in the fit of a quartic polynomial in 1/N to the array
N Noin, M) TOr the FKdAV equation. Ny, is the abscissa; Npe, = 20 (dosted
curve), N, = 40 (dashed), and N, = 60 (solid curve).

N+l

ol = Z I(g; Day;, (7.15)

where we have approximated the exact far field wavenumber,
ke = (1 + 4% by 1, consistent with the other O(&") errors
inherent in {7.15) and where it is assumed that N and ¢ are
related by the optimal truncation relations £{N) = #/{4(N —
3}, i.e., Eqg. (2.8).

From (7.14), we can easily extrapolate via polynomial fitting
in the polynomial argument 1/N that

o ~ 376.406 exp(—zi), £=0. (7.16)
£

Figure 9 is a visualization of the fitting. Since low degree
polynomials give less accurate approximations (o the constant
v, both here (not shown) and for the forced-KdV equation as
shown above, the graph illustrates the constant in a fourth-
degree polynomial which is fit via least squares to the subse-
quence ;"™ defined by (7.11), where j = N, Nyin T 1, <.y N

Obviously, the approximation to the prefactor in (7.14) is
poorest when N, is small; it is best to fit the taif of the sequence
rather than to approximate many terms of the sequence by the
least squares polynomial. As Ny, increases, the approximation
also improves as one would expect. When both N, and N,
are large, the constant in the fitting polynomial is approximately
376.406 independent of the precise values of Ny, and Ny,

The first-order hyperasymptotic approximation can similarly
be extrapolated to compute the constant #, in the improved ap-
proximation

o~ 376.406(1 + me + O(sz))exp(—i), e, (1.17)

aliv
W= Py

P> PN 376,406 exp(— 7/28(N))

- 1/e(N). (7.18)

As for the forced-KdV equation, roundoff forced us to com-
pute ek 1) in Maple in exact symbolic form for ¥ > 20. One
must be careful to evaluate the exact Maple expressions for gy,
which involve only rational numbers and powers of 7, with
high precision floating point arithmetic. Using Maple’s default
precision (10 decimal places) to convert the exact py to floating
point numbers gave rather large errors for large N. We found
it sufficient to specify 25 decimal place accuracy for N up to 40.

Grimshaw and Joshi [15], using matched asymptotic expan-
sions in the complex-plane, have shown that the exact value
for v is

y = - (7.19)

We made 2 least squares fit of polynomials in 1/N to {p.,
Pns e i} Polynomials of degrees 1 to 4 give {-3.1497,
3.1452, —3.1417, —3.1418} with relative errors of 0.25%,
0.11%, 0.0025%, and 0.09%. The linear polynomial is shown
in Fig. 10 along with a subsequence of py. The thin solid line
should hopetully intersect the left axis at the thick horizontal
line, but it does not. However, the relative error of the extrapo-
lation to 1/N = O is only 1 part in 400.

FKdV Eq

-2.85

29 t

295t

¢ 0.01 002 0.03 0.04 0.05 006 0.07 0.08 0.09 0.1
1IN

FIG. 10. (FKdV equation). Circles: py for ¥ = 11, 12, ..., 40, plotted
versus 1/N. Thin solid line: The linear polynomial which is the least squares
fit to {py, ooy P}t pEN) = —3.1497 + 2.83/N. Thick solid horizontal line:
The exact v, = — 7.
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3. Third-Order Nonlinear Schroedinger (TNLSY Equation

The equation is

“3 0t ie’ Qo+ 30 +[QF @ —iQu = 0. (7.20)
This complex-valued equation has complex-valued envelope
solitary waves. The first few terms of the perturbation theory are

Q(x) ~ e sech{e x) — 3ie’ sech(e x) tanh( e x)
+ &' sech(e x)[21 sech¥(s x) — 4]
+ &% sech(e x)tanh(e x)[*5* — 151 sech(¢ x)] (7.21)

+ £'sech(e x)[ -152 — # sech’(e x) + 1529 sech*(e x)].

Strictly speaking, the one-parameter family of solutions approx-
imated by (7.21} is only a subset of a broader parameter family,
but [1] shows that the general family can be generated from
the solutions we will discuss by trivial rescalings.

Wai, Menyuk, Lee, and Chen [19] have derived general
recurrence relations to compute the TNLS multiple scales series
to all orders; we follow their spirit with minor changes of
notation and implementation.

Our goal is to compute approximations to the radiation coef-
ficient . The asymptotic form of Q(x) for the nonlocal enve-
lope solitary wave is

Q(x) ~ ale)isign(x) exp{—ix/2 + Bi g sign(x)

+ O0(=D), x| > 1/e. (7.22)
The zeroth-order hyperasymptotic approximation will yield a
sequence of approximations to 1, where

aley~ (v +me+..) exp(fg), e=0. (7.23)

To compute the residuals, we expand

o ;
= j Jsecht
O(e x) ; & {; uzsech(e x) (7.24)
-1
+ itanh{z x) Z vysech*(e x) [

(This form simplifies notation at the expense of wasted storage:
all ., and v;;_,, are zero.)
The residual is expanded as

j+2
rialx) = Y, rysecht(e x)
k=1

jtl

+ i tanh{z x} 2 pasecht(e x),
k=1

(7.25)

00005 07 095 02 025 03 0.5 04 0.45 05

LIN

FIG. 11. Elements of o, divided by exp(—n/[4=2( )]}, for the TNLS
nonlocal solitary wave. Solid: subsequence for odd ¥, beginning with N = 3,
3, ... 101; the residuals which generate this subsequence are powers of
sech(e x). Dashed; even N, from N = 2 to N = 100; the residuals are poly-
nomials in sech(z x) multipiied to tanh(e x). The top axis is at 13.1273,
our best estimate for w(0).

where ri,2(x) is O(e*™), but serves as the forcing in the perturba-
tion equation that determines the O(g7) term in Q(x). Thus,
the & sech(e x) tanh(e x) term in Q(x), whose coefficient is
vy, is found from g, in r,{x). The corresponding approximation
to the radiation coefficient follows by applying the last fine of
Table II. In so doing, we replace the multiple scales perturbation
equation by a differential equation which includes the rhird
derivative but is constant coefficient so that & may be easily
found by evaluating an integral as explained in Section 5.
The zeroth-order approximation is

T m
oA = exp(‘ﬂ D™ v

(7.20)

FIN2N+2, NOdds
N=2734, ..

Pawamer, N even,

When rescaled by dividing out the exponential, (7.26) gives a
sequence of numbers that converge to ¥, as N = co.

One minor complication is that the TNLS residual is a poly-
nomial in sech(e x) only at odd order; the residual (and the
perturbation terms it forces) at even order are of similar form,
except for multiplication by tanh(e x). As shown in Fig. 11,
the even and odd N subsequences are best plotted separately.
However, both converge to a common limit as N = oo,

The convergence of the polynomial extrapolants is illustrated
in Fig. 12. The horizontal axis is N, an odd integer, where the
polynomial is fitted to {of”, a{f®, ..., &P} As the fit is restricted
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FIG. 12. Hyperasymptotic approximations to #, the TNLS proportionality constant in {7.23), as obtained by least-squares fitting a polynomial to the

sequence of (edd-numbered) approximations {af™, o, ...

off}, where the latter have been scaled by dividing out the exponential exp(—m/(4e)} and where

N, the lower limit of the sequence of fitted approximations, is the horizomal axis of the graph. Dotted: linear polynomial. Dot-dash: quadratic polynemial.
Dashed: cubic, Solid; guartic polynomial, Circles: quintic (fifth-degree) polynomial, x’s: sextic polynomial. All three graphs (a, b, c) are identical, except for

different vertical scales.

1o a smaller and smaller subsequence, the linear, quadratic,
cubic, and quartic polynomials converge to 1, == 13.12734. The
fifth and sixth degree polynomials (symbols) agree closely with
the limit for all lower limits N until N is close to 60. This is
not surprising; the high degree polynomials for this N use only
one or two more points than the corresponding interpolants,
and the failure of high degree, equispaced interpolation is de-
scribed in most numerical analysis texts as the *‘Runge phenom-
encn.’” Untii this instability sets in, however, Fig. 12c shows
that all polynomials of degrees three to six seem to be converg-
ing on a common Iimit:

a(e) ~ 13.1273 exp(—4—’;), e=0. (127

This is close to the numerical calculations of Cai er al. [19],
who find that », = 13,24, a difference of a bir under 19%. The
reason for this small difference is unknown.

We shall postpone a computation of the first-order correction
¥ to a future article devoted to a variety of TNLS results.

8. Summary and Comparisons with Related Studies

In this article, we have described a new procedure for com-
puting the prefactors v, and », in the asymplotic approximation
to the radiation coefficient o of a weakly nonlocal solitary
wave, which is typicaliy of the form

ale) ~(vy+ ve + ...)exp(—%), e<€],
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The constant g is usually easy to determine {1, 4, 13, 15]; ¢/
£ is simpiy the distance from the real x-axis to the nearest poles
or branch points of the lowest order multiple scales approxima-
tion, For the forced-KdV equation, 1,{x) = 12 sech’(& x), which
has double poles at x = *in/(2e) (plus additional irrelevant
singularities farther from the real axis). Therefore, g = 7/2 for
this equation.

The task of determining w, w, ... in {8.1) is very much
harder. The earliest method, developed by Segur and Kruskal
[13}, requires matching asymptotic expansions in the complex
piane. Even then, the final step is numerical.

Pomeau, Ramani, and Grammaticos [14] simplified the
matched asymptotics method by use of Borel summation, which
replaced the numerical solution of a differential equation by
the extrapolation of a nonlinear recurrence. However, this ex-
trapolation, too, must be performed numerically.

Akylas and Yang [16, 23] have proposed an ingenious alter-
native: converting the probiem to a nonlinear integral equation
by taking the Fourier transform and then applying the method
of multiple scales to the transform [/(k) rather than to u{x).
This method does not explicitly require adventures in the com-
plex plane and yields a simple nonlinear recurrence which can
be extrapolated to give »—but only numerically.

Our new procedure shares the common defect of requiring
a final numerical extrapolation. However, it does not require
an integral equation, Borel summation, or matched asymptotics
in the complex plane,

Instead, our zeroth-order method for 1, has only three steps:

{1y Compute the multiple scales series to high order.

(ii) Extract the term from Nth order residual which is
proportional to the highest power of sech(e x). Divide this by
an order-dependent constant which is a function only of the
linearized but constant coefficient form of the differential
equation.

(iii) Extrapolate the sequence of approximations to N =
@ by fitting a polynomial of low degree in 1/N.

The first step is easy because for the three examples discussed
here, and for many other problems catalogued in [1], the multi-
ple scales series is simply a power series in & with coetficients
which are polynomials in sech(z x), perhaps multiplied by a
single factor of tanh(e x). By using hyperbolic identities, the
series can be calculated to very high order via recurrence rela-
tions as illustrated for the forced-KdV equation in Table [.

The second step is easy; Section 5 gives the general method
tor computing the radiation coefticient for the solution of a
forced, linear differential equation. The answer for our three
examples is given in Table IL

The final step requires only a library routine for polynomial
least-squares approximation. For our three examples, we obtain
(we think) the first six digits for u,.

Te compute the first-order correction ¥ requires two addi-
tional steps. First, we need to explicitly estimate the optimal
truncation N,(e). (We used the formula for N,,(£) to motivate

some of the approximations for the zeroth-order hyperasymp-
totic method, but it drops out of the final sequence of approxima-
tions to ) This question is easily answered in inverse form:
given N, for what value of ¢ does the Fourier transform of
the leading term in the residual have its peak at the far field
wavenumber k;, that is, at the wavenumber of the “*wing’’
oscillations of the nonlocal solitary wave? This is simpler than
one might suppose because the residual’s “‘leading term’” i3
proportional to the jth derivative of sech(e x), where j is chosen
so that the highest power in this derivative is of the same degree
as the highest power of sech(e x) in the residual; the Fourier
transform of the leading term is just (ék)’ times that of sech(e
x) itself,

Second, we need to use the full Nth-order perturbative resid-
ual to compute ¢ from the formula of Table IL. As illustrated
for the forced-KdV equation, however, this is relatively easy.

Our “‘hyperasymptotic’’ perturbation theory is appealing be-
cause of its simplicity. Nothing is manipulated except powers
of & and sech(e x).

There are many similarities between our method and themes
previously developed in the literature. The recurrence derived
from the Borel summation method, for example, is a recursively
compuied high order perturbative approximation, just like the
multiple scales series that we use. The difference is that our
expansion is on the real axis in powers of sech(e x), whereas
the Borel-derived series is in inverse powers of y, where y is
the distance from a pole of the lowest order multiple scales

approximation, situated off the real axis.

Although Akylas and Yang’s sequence of approximations is
derived through a nonlinear integral equation and a multiple
scales approximation in wavenumber, rather than in physical
space, nevertheless the elements of their sequence are identical
with our one-term approximation 1o », for the forced-KdV and
FKdV equations. Obviously, there are some close but subtle
connections between their method and ours, despite the very
dissimilar appearances.

Akylas and Yang [16] also solved the forced-KdV equation
with a Gaussian forcing. Although this is a rather special and
unusual example because the Gaussian is an entire function, it
nevertheless should be noted that their integral equation/Fourier
transform method is successful for this case (albeit with some
messy generalization of their algorithm). It is unclear whether
our method can be similarly extended.

Another restriction is that some problems, such as the inter-
mediate long wave (1LW) equation discussed by Yang and
Akylas (23], have a multiple scales series which is not a simple
power series, but includes terms in & log(e) and so on. We
have not yet attempted to extend our hyperasymptotic method
to power-and-log series.

The notion of extracting « by adding the highest derivative
back to the left-hand side of the multiple scales perturbation
equation has been around for at least five years as reviewed
by Hakim [9). However, the first-order residual gives an O(1)
error in #, although the exp(—g/g) factor is computed correctly.
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We have shown above that the only way to obtain an accurate
answer from this strategy is to use a sigher order multiple scales
residual as the inhomogeneous term in the constant coefficient
differential equation which is solved for a.. Even then, the Nth-
order residual generates an approximation which has the large
relative error O(1/N). What makes the hyperasymptotic method
really useful is that this sequence of mediocre approximations
for different N can be extrapolated to N = = to give #, to six
decimal places.

The computation of v has much less precedent in the litera-
ture. Grimshaw and Joshi [15] have derived this correciion for
the fifth-order KdV equation by matching asymptotic expan-
sions in the complex plane. We have been able to confirm
Grimshaw and Joshi’s analytical result, », = —1 14, to within
about 0.1%.

QOur one completely novel result is that », = 0 for the forced-
KdV equation. Our calculations of 1, for the third-order nonlin-
ear Schroedinger equation will be published shortly in an-
other place.

APPENDIX: ENVELOPE FERTURBATION THEORY

When the initialization for the Newton—Kantorovich equa-
tion (3.1) is a superasymptotic approximation of high order
No{e), the Fourier transform of the inhomogeneous term has
the shape of a two-humped camel’s back, where the peaks are at
k = *1 (Fig. 4). To analytically solve the Newton—Kantorovich
equation, we apply an envelope perturbation theory which is
a cousin of that used to derive the Cubic Schroedinger and
TNLS equations [24, 25].

The goal is to solve, in the limit £ <€ |,

vt v—eglglex)v=rix. {A.1)
on either an infinite or spatially periodic interval subject to the
restriction that r(x) is a function whose Fourier transform, R(k),
1s peaked at K = *1. (In our application, v(x) = A'(x), the
first quasi-Newton correction to the optimally truncated multi-
ple scales series for u(x), £ g(e x) = 2 w(x) for the forced-
KdV equation and r(x) = ry(x), the residual at the optimal
order. However, the method is general as long as r(x) has a
two-humped Fourier transform.)

It is very convenient to solve for each hump separately, so
we split the transform R(k) into two pieces via

R(k) = H(k) R(k) + H(—k) R(k), (A.2)
where H(k) is a smoothed approximation to the step function.
{A.2) is free of approximations if

H(k) + H(=k) = 1,

ali k. (A.3)

Therefore, H{k) should satisfy the following three conditions;

(i) lim H(k) = 1 (A.4a)
i) lim H(k) =0 (A4.b)
(il {H(k) —3t=—{H(-k) — % (A.5)

The first two conditions ensure that H(k) R(k) is a function
with only a single large peak at k = 1; the other is cut off by the
decay of H(k) for negative k. The third condition, antisymmetry
about the value of § with respect to k = 0, is just a rearrangement
of (A.3).

There are many possible choices for the quasi-step func-
tion including

1

H(k) = Eerfc(—b k), (A.6)

where & is an arbitrary positive constant 31,

We can then write, without approximation,
v(x) = v.(x) + v_(x), (AT)

where the two parts solve

Ve F v = q(8X) ve = r2(X) (A.8)
r.-(x) = p.(e x) exp(xix), (A.9)

13 E]

where p.(e x), the “‘envelope of the forcing,”” is the inverse
Fourier transform of the forcing with a unit shift in wavenum-
ber; that is,

pa(ex) = 511—7 Jm H{1 = kyR(k = 1) exp(—ikx) dx  (A.10)

To solve (A.8), define the envelope A(x) through
v-(x) = A(e x) exp(£ix). (A.11)

Introducing the slow variable, X = ¢ x and dividing out the
common exponential factor gives

+2ie Ay T & Ay — S g(X)A = p(X). (A12)

So far, we have made no approximations, even though we have

inserted & as a scaling factor in several places. If we assume

that our scalings are correct, that is, if g, is truly a function
only of the slow variable X = & x, then (A.12) simplifies to

2ie Ay = p-(X) (A.13)

which implies that to lowest order
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A(X) ~ F EIEJ: (1) dY, (A.14)

independent of the x-dependent coefficient, g(e x).

This justifies the quasi-Newtou approximation (Section 4)
which neglects g(e x).

There are two limitations on (A.14). The first is that we have
not proved that the envelope of the residual varies only on the
slow length scale, we have merely assumed it. Second, the
argument above does not explain why the relative error in o
is O(&?) instead of O(e). However, both these conclusions are
supported by the experimental evidence of Fig. 5.
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